
MatRaptor: A Sparse-Sparse Matrix Multiplication
Accelerator Based on Row-Wise Product

Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang

School of ECE, Cornell University

Email: {nks45, hj424, jl3952, dha7, zhiruz}@cornell.edu

Abstract—Sparse-sparse matrix multiplication (SpGEMM) is a
computation kernel widely used in numerous application domains
such as data analytics, graph processing, and scientific comput-
ing. In this work we propose MatRaptor, a novel SpGEMM
accelerator that is high performance and highly resource efficient.
Unlike conventional methods using inner or outer product as
the meta operation for matrix multiplication, our approach
is based on row-wise product, which offers a better trade-
off in terms of data reuse and on-chip memory requirements,
and achieves higher performance for large sparse matrices. We
further propose a new hardware-friendly sparse storage format,
which allows parallel compute engines to access the sparse data in
a vectorized and streaming fashion, leading to high utilization of
memory bandwidth. We prototype and simulate our accelerator
architecture using gem5 on a diverse set of matrices. Our
experiments show that MatRaptor achieves 129.2× speedup over
single-threaded CPU, 8.8× speedup over GPU and 1.8× speedup
over the state-of-the-art SpGEMM accelerator (OuterSPACE).
MatRaptor also has 7.2× lower power consumption and 31.3×
smaller area compared to OuterSPACE.

Index Terms—sparse matrix multiplication, sparse formats,
spatial hardware

I. INTRODUCTION

Sparse-sparse matrix-matrix multiplication (SpGEMM) is a

key computational primitive in many important application do-

mains such as graph analytics, machine learning, and scientific

computation. More concretely, SpGEMM is a building block

for many graph algorithms such as graph contraction [14], re-

cursive formulations of all-pairs shortest-paths algorithms [9],

peer pressure clustering [44], cycle detection [60], Markov

clustering [50], triangle counting [5], and matching algo-

rithms [41]. It has also been widely used in scientific com-

puting such as multigrid interpolation/restriction [8], Schur

complement methods in hybrid linear solvers [57], colored

intersection searching [23], finite element simulations based

on domain decomposition [19], molecular dynamics [21], and

interior point methods [24].

SpGEMM often operates on very sparse matrices. One

example is the Amazon co-purchase network [26], which is a

graph where each product is represented as a node and the like-

lihood of two products being bought together is represented as

an edge. This network consists of 400K nodes and 3.2M edges

forming an adjacency matrix of 400K × 400K with a density

of 0.002%. With such a high sparsity, the SpGEMM compu-

tation becomes highly memory-bound and requires effective

utilization of memory bandwidth to achieve high performance.

Traditionally, SpGEMM computations have been performed

on CPUs and GPUs [12], [38], [51], both of which have low

energy efficiency as they allocate excessive hardware resources

to flexibly support various workloads. Hardware accelerators

tackle this energy efficiency problem through specialization.

However, there are three key challenges in designing an

accelerator for SpGEMM computation: (1) the inner product

and outer product algorithms, which perform well for dense

matrix multiplication, are not necessarily the ideal algorithms

for SpGEMM due to the low densities of the sparse matrices

involved in the computation; (2) the SpGEMM computation

is highly memory-bound and the traditional sparse storage

formats such as CSR, CSC and COO perform random data

accesses when used with multiple compute units in parallel,

which results in low memory bandwidth utilization; (3) the

output of SpGEMM is also a sparse matrix for which the

number of non-zeros are not known ahead of the time, and

hence contiguous data allocation for different rows/columns

that are being computed in parallel requires synchronization.

In this work, we analyze the different dataflows for

SpGEMM and compare them in terms of data reuse and on-

chip memory requirements. We argue that row-wise product

approach has the potential to outperform other approaches

for SpGEMM for very sparse matrices. We further propose

a new sparse storage format named cyclic channel sparse
row (C2SR), which enables efficient parallel accesses to the

main memory with multiple channels. Using the row-wise

product approach and the new sparse format, we describe the

design of MatRaptor, a highly efficient accelerator architecture

for SpGEMM. According to our experiments on a diverse

set of sparse matrices, MatRaptor can achieve significant

performance improvement over alternative solutions based on

CPUs, GPUs, and the state-of-the-art SpGEMM accelerator

OuterSPACE [39].

The key technical contributions of this work are as follows:

(1) We systematically analyze different dataflows of

SpGEMM by comparing and contrasting them against data

reuse and on-chip memory requirements. We show that a

row-wise product approach, which has not been explored in

the design of SpGEMM accelerators, has the potential to

outperform the existing approaches.

(2) We introduce C2SR, a new hardware-friendly sparse

storage format that allows different parallel processing engines

766

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00068

(PEs) to access the data in a vectorized and streaming manner

leading to high utilization of the available memory bandwidth.

(3) We design a novel SpGEMM accelerator named Ma-

tRaptor, which efficiently implements the row-wise product

approach and fully exploits the C2SR format to achieve high

performance. Our experiments using gem5 show that MatRap-

tor is 1.8× faster than OuterSPACE on average with 12.2×
higher energy efficiency. Our accelerator is also 31.3× smaller

in terms of area and consumes 7.2× less power compared to

OuterSPACE.

II. ANALYSIS OF SPGEMM DATAFLOWS

In matrix multiplication, since each of the input matrices can

be accessed in either a row-major order or column-major order,

there are four possible ways to perform matrix multiplication

— inner product (row times column), outer product (column

times row), row-wise product (row times row), and column-

wise product (column times column) as shown in Fig. 1.

In the following subsections, we will discuss each of these

four approaches in terms of the data reuse and their on-chip

memory requirements. We define data reuse as the number

of multiply-accumulate (MAC) operations performed when a

single byte of data is read/written from/to the memory. For the

sake of simplicity, we assume that: (1) each of the input and

the output matrices have dimensions of N ×N ; (2) both the

input matrices have nnz number of non-zeros; (3) the output

matrix has nnz′ number of non-zeros; and (4) the number

of non-zero elements for each row/column are the same and

equal to nnz
N for input matrices and nnz′

N for output matrix.

A. Inner Product

This is arguably the most widely-known approach for com-

puting matrix multiplication, where a dot product is performed

between a sparse row from the first matrix and a sparse

column from the second matrix as shown in Eq. (1). With this

approach, we can parallelize the computation of multiple dot

products across different PEs. Fig. 1a shows the inner product

approach for SpGEMM computation and the parallelization

strategy.

C[i, j] =

N∑

k=0

A[i, k] ∗B[k, j] (1)

This approach reads a row of sparse matrix A and column

of sparse matrix B each of which has nnz
N non-zeros, and

performs index matching and MACs. As the number of non-

zeros in the output matrix is nnz′, the probability that such

index matching produces a useful output (i.e., any of the two

indices actually matched) is nnz′
N2 . Thus the data reuse for the

inner product approach is O(nnz
′/N2

nnz/N) which is O(nnz
′

nnz .
1
N).

Since N can be very large and nnz′ is similar to nnz, the

data reuse of inner product approach is very low for large

matrices. The on-chip memory requirements for this approach

is O(nnzN). Since N can be of the order of 100K − 10M and
nnz
N is of the order of 10−100s the data reuse for inner product

approach is low; however, the on-chip memory requirements

are also low.

Thus, inner product approach has three major disadvantages

for SpGEMM:

(1) The two input matrices need to be stored in different

formats, one row major and another column major.

(2) It attempts to compute each element of the output matrix.

However, in case of SpGEMM, the output matrix is typically

also sparse, which leads to a significant amount of wasted

computation. For example, in Fig. 1 when the inner product is

performed between the last row of matrix A and last column

of matrix B, none of the indices match and the output is a

zero.

(3) It performs a dot product of two sparse vectors, which is

very inefficient since it requires index matching where a MAC

is performed only when the indices of the non-zero elements

from the two vectors match; for example in Fig. 1a the inner

product of first row of A and second column of B requires

three index matching operations but performs only one MAC.

B. Outer Product

With this approach, an outer product is performed between

a sparse column of the first matrix and a sparse row of the

second matrix to produce partial sums for the entire output

matrix as shown in Eq. (2). The outer product approach

parallelizes the computation of different outer products across

different PEs. Fig. 1b shows the outer product approach and

the parallelization strategy.

C[:, :] =
N∑

k=0

A[:, k] ∗B[k, :] (2)

This approach reads a column and a row of the sparse

input matrices A and B, each with nnz
N non-zeros and per-

forms an outer product with (nnzN)2 MAC operations. Thus

the data reuse for outer product approach is O(nnzN). The

on-chip memory requirement for outer product approach is

O(nnzN + nnz′), where the first term is the on-chip storage

required for rows/columns of input matrices and the second

term is on-chip requirement for the output matrix. Thus, using

typical ranges of nnz
N from 10-100 and for nnz′ from 100K-

10M, the outer product approach reuses the data read/written

from/to the memory 10-100 times; but it requires an on-chip

memory size of hundreds of mega-bytes.

The outer product algorithm solves two major problems

with the inner product approach by computing only non-zero

entries of the output matrix and not performing any index

matching while multiplying the inputs. However, it has three

major disadvantages:

(1) The two input matrices still need to be stored in different

formats, one column major and another row major.

(2) Multiple PEs produce the partial sums for the entire

output matrix, as shown in Fig. 1b, which requires syn-

chronization among them. This limits the scalability of the

hardware.

767

x

x

x

=

=

=

+

+. .
 .

. .
 . . .

x

x

x

=

=

=

+

+. .
 .

. .
 . . .

x

x

x

=

=

=

+

+. .
 .

. .
 . . .

x

x

x

=

=

=

+

+. .
 .

. .
 . . .

Parallelism

(a) Inner product (b) Outer product (c) Row-wise product (d) Column-wise product

Different parallel units
reading and writing same
location (synchronization)

4 index matching operations
but no MAC

Fig. 1: Four different ways of computing SpGEMM kernel — (a) Inner product approach; (b) Outer product approach;

(c) Row-wise product approach; and (d) Column-wise product approach. The non-zero elements in the two input matrices are

shown in blue and green colors, the non-zero elements in the output matrix are shown in orange color, and the elements of

the matrices involved in the computation are shown with dark borders.

(3) For output reuse the partial sums are typically stored on-

chip. This requires a large buffer since the partial sums from

the entire output matrix are produced for each outer product.

For example, OuterSPACE [39], which employs the outer

product approach, uses 0.5MB of on-chip memory (256KB of

scratchpads within the PEs, 256KB of L0 caches and 16KB

of victim caches). Yet it still cannot hold all the partial sums

on the chip as the size of partial sums varies from 10-100MB.

C. Row-Wise Product

In the row-wise product approach (also known as Gus-

tavson’s algorithm [16]), all the non-zero elements from a

single row of matrix A are multiplied with the non-zero entries

from the corresponding rows of matrix B, where the row

index of matrix B is determined by the column index of the

non-zero value from matrix A. The results are accumulated

in the corresponding row of the output matrix as shown in

Eq. (3). Multiple rows from the output matrix can be computed

in parallel. Fig. 1c illustrates the row-wise product approach

and the parallelization strategy. Fig. 2 gives a more concrete

example which illustrates the computation of SpGEMM with

two PEs using the row-wise product approach. Here, each of

the two PEs reads entire rows of A and B matrices and writes

entire rows of the output matrix C.

C[i, :] =

N∑

k=0

A[i, k] ∗B[k, :] (3)

With this approach, we read a scalar value from matrix A
and a row of matrix B with nnz

N non-zeros and perform an

scalar-vector product with (nnzN) MAC operations. While the

data reuse is low, the on-chip memory requirement for this

approach is only O(nnzN + nnz′
N). Here the two terms represent

the on-chip storage required by the non-zeros from a row of

B and a row of the output matrix, respectively. Thus, using

typical ranges of nnz
N and nnz′

N from 10-100, the row-wise

product approach only requires an on-chip buffer size of a

few kilo-bytes. The key advantages of using row-wise product

are as follows:

a00 a02 a03

a13

a21

a31 a32

b00 b03

b12

b20 b22

b30 b31 b33

c00 c01 c02 c03

c10 c11 c13

c22

c30 c32

a00 b00 c000

a02 b20 c200

a03 b30 c300

X

X

X

=

=

=

b22 c202=

b31

b33

c301

c303

=
=

c003b03

a21 b12 c122X =

a13 b30 c310

a31 b12

X

X

=

= c132

c311b31

c313b33

a32 b20 c230X =
c232b22

c000 + c200 + c300

c003 + c303

c132 + c232

x

=

A
PE 0 PE 1

B

C

Fig. 2: Parallelization of row-wise product on two PEs
— PE0 is assigned to rows 0 and 2 of input matrix A and

computes rows 0 and 2 of output matrix C; PE1 is assigned

rows 1 and 3 of the matrix A and computes rows 1 and 3 of

the matrix C; The matrix B is shared between the two PEs.

• Consistent Formatting: Row-wise product accesses both

the input matrices and the output matrix in row-major

order that allows us to use the same format for the

inputs and outputs. Since many algorithms such as graph

contractions require a chain of matrix multiplications

having a consistent format is essential.

• Elimination of Index Matching: The core computation

in this approach is scalar-vector product; hence it com-

putes only non-zero entries of the output matrix and does

not require inefficient index matching of the inputs as in

the case of inner product approach.

• Elimination of Synchronization: This approach allows

multiple PEs to compute different rows of the sparse

output matrix and hence there is no need to synchronize

the reads and writes to the output memory.

• Low On-Chip Memory Requirements Since a single

output row is computed at a time, the required output

buffer size is in the order of O(nnz
′

N). This is contrast

with the outer product approach, which requires the entire

output matrix to be stored on chip with a buffer size

of O(nnz′). As N is typically very large (in the order

of 100K–10M), the on-chip memory savings from row-

768

wise product approach over outer product approach are

significant.

The row-wise product approach also has some disadvan-

tages: (1) on-chip data-reuse for for matrix B is low as com-

pared to outer product; and (2) just like the other approaches

row-wise product needs to cope with the load imbalance issue

among multiple PEs. The low on-chip data reuse has more

impact on the performance when the density of matrix B is

high. This, however, is not the case with most of the SpGEMM

algorithms where both the operand matrices are highly sparse.

The load imbalance issue can mostly be solved using a round-

robin row allocation strategy discussed in Section IV-A.

D. Column-Wise Product

In column-wise product approach, all the non-zero elements

from a single column of matrix B are multiplied with the non-

zero entries from the corresponding columns of matrix A and

the results are accumulated in the corresponding column of the

output matrix as shown in Eq. (4). Fig. 1d shows the column-

wise product approach and the parallelization strategy.

C[:, j] =
N∑

k=0

A[:, k] ∗B[k, j] (4)

This approach is similar to the row-wise product approach

and has the same data reuse and on-chip memory requirements

as in case of row-wise product approach. The rest of the paper

focuses on row-wise product approach for SpGEMM as it has

low on-chip memory requirements and does not lose much in

terms of data reuse compared to the outer product approach,

especially for very sparse large matrices.

III. SPARSE MATRIX FORMAT

By using row-wise product, we can achieve high compute

utilization and low on-chip storage requirements. In this sec-

tion, we further propose a new hardware-friendly sparse stor-

age format to achieve high utilization of the off-chip memory

bandwidth, which is essential for high-performance SpGEMM

computation. For scalability and high performance, the on/off-

chip memories are often divided into smaller memory banks

to achieve lower memory latency and higher bandwidth. We

abstractly represent such memory banks as channels in our

discussion and assume that data is interleaved in these channels

in a cyclic manner. These channels can be later mapped to

different DRAM channels and scratchpad banks.

A. Limitations of CSR Format

Fig. 3 shows the same sparse matrix A as in Fig. 2 using its

dense form (Fig. 3a) and the conventional compressed sparse

row (CSR) format (Fig. 3b). Here the CSR format consists

of (1) an array of (value, column id) pairs for the non-zero

elements in the matrix and (2) an array of row indices, where

the ith index points to the first non-zero element in the ith row

of the matrix. In Fig. 3, we illustrate how the (value, column

id) array can be mapped to a memory with two channels.

Fig. 3e shows how two PEs read the data from matrix A

and Fig. 3f shows how these PEs write the output matrix C
using the row-wise product approach depicted in Fig. 2. We

assume that the channel interleaving is 4 elements and each

PE sends 4-element wide requests (2 non-zero values and 2

column ids) to the memory. As shown in Fig. 3e and Fig. 3f,

the CSR format has several major limitations: (1) a vectorized

memory request can be split among different channels, leading

to non-vectorized memory access within each channel; (2)

multiple PEs may send the memory read requests to the same

channel resulting in memory channel conflicts; (3) a vectorized

memory read can read wasteful data which does not belong to

that PE; and (4) for writing the output matrix, each PE writing

the ith row to the memory needs to wait for all the PEs writing

rows < i to finish, which leads to synchronization issues.

B. The Proposed C2SR Format

To overcome the aforementioned limitations, we propose a

new sparse storage called channel cyclic sparse row (C2SR),

where each row is assigned a fixed channel in a cyclic manner.

Fig. 3c shows the cyclic assignment of rows to the channels

and Fig. 3d shows the corresponding C2SR format. This new

format consists of an array of (row length, row pointer) pairs

and an array of (value, column id) pairs. The (value, column

id) array stores the non-zero elements from the sparse matrix

along with their column ids. The ithentry in the (row length,

row pointer) array stores the number of non-zeros in the ith

row and the pointer to the first non-zero element from that

row in the (value, column id) array. To store a sparse matrix in

C2SR format, first each row is assigned to a fixed channel in a

cyclic manner and then for each channel all non-zero elements

are written serially to the memory locations corresponding to

that channel in the (value, column id) array. For example in

Fig. 3c, rows 0 and 2 are assigned to channel 0 and hence their

non-zero elements are stored at the locations corresponding

to channel 0 in the (value, column id) array in Fig. 3d. The

reading of matrix A and writing to output matrix C are shown

in Fig. 3e and 3f. The C2SR storage format has the following

three key properties:

• No Channel Conflicts: Each row is assigned to a unique

channel, which means that the rows mapped to different

channels do not have memory channel conflicts and can

be accessed in parallel. This is in contrast to CSR for-

mat, where different rows are not necessarily mapped to

distinct channels and result in memory channel conflicts.

• Vectorized and Streaming Memory Reads: All the

rows mapped to a channel are stored sequentially in that

channel, resulting in high spatial locality when accessing

these rows in a row major order.

• Parallel Writes to the Output Matrix: The rows of the

sparse matrix mapped to a channel can be written to that

channel without requiring any information about the rows

mapped to other channels. For example in Fig. 3f, with

C2SR format PE0 and PE1 do not wait for each other and

can write to the results to their corresponding channel in

parallel. While using CSR format, PE1 needs to wait for

769

a00 a02 a03

a13

a21

a31 a32

(a) Sparse Matrix A
under CSR (b) CSR format for A

Row length

a00 a02 a03 a13 a21 a31 a32

0 2 3 3 1 1 2

0 3 4 5 7

a00 a02 a13 a31 a03 a21 a32

0 2 3 1 3 1 2

3 1 1 2

. . . .Row pointer

a00 a02 a03

a13

a21

a31 a32

value

column id

value

column id(c) Sparse Matrix A
under C2SR

(d) C2SR format for A

channel 0 channel 1

Row indices
a00 a02

0 2
a13 a21

3 1

a03 a13

3 3
a31 a32

1 2

PE0 PE1

a00 a02

0 2
a13 a31

3 1

a03 a21

3 1
a32

2

PE0 PE1

cycle 0

cycle 1

cycle 2

a21 a31

1 1

channel conflict

Non-vectorized memory
reads in both channels

Useless reads
from memory

CSR C2SRTime

(e) Comparison between CSR and C2SR

c00 c01 c02 c03

c10 c11 c13

c22

c30 c32

c00 c01 c02 c03 c10 c11

0 1 2 3 0 1

c00 c01 c10 c11 c02 c03

0 1 0 1 2 3

CSR

C2SR

PE0 PE1 PE0 PE1 PE0 PE0

PE0 PE0 PE0 PE0 PE1

(f) Output matrix being stored to the memory in CSR and C2SR formats by two PEs

cycle 0channel 0 channel 1

PE0

PE1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5

PE1

Fig. 3: Comparison of sparse storage formats — (a) shows the sparse matrix A in its dense representation; (b) shows matrix

A stored in the CSR storage format and assignment of non-zero elements to two channels using 4-element channel interleaving;

(c) shows the same sparse matrix A in dense representation where each row is mapped to a unique channel; (d) shows the

sparse matrix A in C2SR format; (e) shows the cycle by cycle execution of two PEs where PE0 and PE1 read rows 0 and 2,

and rows 1 and 3 of matrix A, respectively; and (f) shows the output matrix C being written by the two PEs in CSR and C2SR

formats.

PE0 to finish so that it can determine the next available

memory location to write the output row.

IV. MATRAPTOR ARCHITECTURE

This section details the implementation of row-wise product

approach for SpGEMM, which benefits over other conven-

tional SpGEMM methods through: (1) consistent formatting,

(2) elimination of index matching, (3) elimination of syn-

chronization, and (4) low on-chip memory requirements. In

Section IV-A we first describe the two major operations in the

row-wise product implementation: multiplication and merge,

where for merge operation an efficient sorting technique using

queues is introduced. In Section IV-B, we provide the details

of the MatRaptor accelerator architecture.

A. Row-wise Product Implementation
An important consideration for SpGEMM acceleration is to

balance load among the PEs. Many real-world sparse matrices

follow the power-law distribution, in which some of the rows

can be completely dense while others may be almost empty.

This can result in load balancing issues in the cases when: (i)

different PEs work in lock step, meaning all the PEs finish pro-

cessing one row each before starting to process the next row;

and (ii) the rows of a sparse matrix mapped to one PE have

significantly more non-zero elements than the number of non-

zeros in the rows mapped to a different PE. MatRaptor solves

(i) by allowing all the PEs to work completely asynchronously.

Such asynchronous execution is made possible by the C2SR

format, which partitions the address space of the output matrix

between different PEs and allows the PEs to independently

produce the results of the output matrix. MatRaptor tackles

(ii) by doing a round robin allocation of rows to different PEs.

This effectively ensures that for the sparse matrices with few

high-density regions, the non-zero elements in these regions

are approximately uniformly split among different PEs.

Fig. 2 shows the parallelization of SpGEMM in row-wise

product approach using two PEs. Here, rows 0 and 2 of the

input matrix A are assigned to PE0, which is responsible for

computing rows 0 and 2 of output matrix C; rows 1 and 3 of

the input matrix A are assigned to PE1, which is responsible

for computing the corresponding rows of the output matrix C.

The input matrix B is shared between both PEs. The PEs read

the input matrices A and B stored in the memory in C2SR,

perform the SpGEMM computation, and write the non-zero

elements of the output matrix C to memory using the same

C2SR format.

The SpGEMM computation within a PE consists of two

major operations: (a) multiply operations, which correspond

to the scalar-vector multiplications shown in Fig. 2; (b) merge
operations, which involves sorting and accumulations. From

now onwards, we will use the following notations: (1) The

770

X

X

X

=

=

=

=

Queue 0

=
=

Merge Operations
Queue 1 Queue 2

Multiply Operations
Phase I

Phase II

01

02

03

04

05

06

07

08

Cycles

Queue
Swapping

+

+

<

+

stream

DRAM

A

B

C
09

10

11

12

>
<

Fig. 4: Illustration of multiply and merge operations involved in computing the results for a single row of the output
matrix — Phase I corresponds to the cycles when the multiplications are performed and the result of the multiplication is

merged with the (data, col id) values in one of the queues; and Phase II corresponds to the cycles when the (data, col id)
values in different queues are merged together and streamed out to the DRAM.

non-zero elements from the input matrices A and B will be

represented as aik and bkj where the subscripts represent

the row index and the column index of the matrix elements,

respectively; (2) A non-zero element of the output matrix will

be represented as either ckij or ck0,k1,...km

ij where ckij = aik∗bkj
and ck0,k1,...km

ij = ck0
ij + ck1

ij + ...+ ckm
ij . The subscripts i and j

represent the row index and the column index of the non-zero

element in matrix C.

Multiply Operations. For the multiply operations, a PE

reads non-zero elements aik from the ith row of matrix A
assigned to it. For each aik, it then reads all the non-zero

elements {bkj1 , bkj2 , bkj3 , ...} from the kth row of matrix B
and performs a scalar-vector multiplication to produce the par-

tial sums {ckij1 , ckij2 , ckij3 , ...} for the ith row of matrix C. For

example in Fig. 2, PE0 reads the non-zero element a00 and the

0th row of matrix B and performs scalar-vector multiplication

on {b00, b03} to produce the partial sums {c000, c003} for the

0th row of matrix C.

Merge Operations. The partial sum vectors for the ith row

of the output matrix C need to be merged to produce the final

results. This requires sorting all the partial sum vectors with

respect to their column indices j and then accumulating the

partial sums which have the same column index. One naı̈ve

solution is to collect all the partial sum vectors and sort them

using a sorting hardware. However, such a sorting hardware

would be inefficient as it would not make use of the property

that each of the partial sum vectors is already sorted with

respect to column indices.

A better approach to solve such a sorting problem is by

using multiple queues. In this approach, each PE has Q >
2 queues where each queue maintains the invariant that its

entries are always sorted with respect to column indices. Out

of all the queues, all queues except one act as primary queues

while the remaining one acts as a helper queue. For each row

of the output matrix, the first (Q−1) partial sum vectors are

written to one of the primary queues such that there is only

one partial sum vector per queue. After the first (Q−1) partial

sum vectors, each partial sum vector is merged with the queue

with the least number of entries and the results are written to

the helper queue. While merging, if the column indices in the

partial sum vector and the top of the queue match, the entry

is removed from both the partial sum vector and the queue

and their sum is pushed to the helper queue. If the column

indices do not match, then the one (either partial sum vector or

queue) with the smaller column index is popped and the value

is pushed to the helper queue. After the merge is complete,

the helper queue is swapped with the primary queue involved

in the merge, and the primary queue becomes the new helper

queue. This process continues until the row index of the non-

zero element from A changes.

Fig. 4 shows the merge part of the computation with three

queues. Initially, the first two queues are the primary ones and

the last is a helper, and the partial sum vectors {c000, c003} and

{c200, c202} are inserted into queues 0 and 1. Then the partial

sum vector {c300, c301, c303} is merged with queue 0 as it has the

least number of entries and the results are written to the helper

queue. When the row index of the non-zero element from A

771

changes, then the entries in all the queues need to be merged

and written back to the main memory. To merge the data in

all the queues, the queue with the smallest column index is

popped and the data is streamed to the main memory. In the

case when multiple queues have the same minimum column

index at the top of the queue, all such queues are popped and

the sum of popped elements is streamed to the main memory,

as shown in Fig. 4. After the last non-zero element from the

first row of matrix A is processed, queue 0 and queue 1 are

merged and the results are streamed to the DRAM.

B. Architectural Details of MatRaptor

Fig. 5a shows the micro-architecture of MatRaptor. It con-

sists of Sparse Matrix A Loaders (SpAL), Sparse Matrix B

Loaders (SpBL), and the compute PEs. SpALs, SpBLs, and

the PEs implement a one-dimensional systolic array with N

rows. The rows of the input matrix A are assigned to the rows

of the systolic array in a round-robin fashion.

Each SpAL reads the non-zero elements aik from a row of

matrix A and sends it along with its row and column indices

to SpBL. SpBL uses the column index k received from SpAL

to fetch the non-zero elements from kth row of matrix B (i.e.,

bkj), and sends aik, bkj , i and j to the main compute PEs. The

PE performs multiplication and merge computations where

it multiplies aik and bkj and merges the results and writes

them to the main memory. A crossbar connects the SpALs,

SpBLs and PEs to the main memory. Since each SpAL and

PE is connected to only one HBM channel, the crossbar is

not a full crossbar and its design is much simplified. The

following subsections describe each component of MatRaptor

micro-architecture in more detail.

Sparse Matrix A Loader. SpAL is configured with the

number of rows N in the sparse matrix A and the pointer to

the beginning of the arrays containing the (row length, row

pointer) pairs in the C2SR storage of matrix A. SpAL first

sends a memory read request to fetch the (row length, row

pointer) pair for a row of matrix A. Then it sends multiple

memory read requests using the row pointer to fetch the

(value, column id) pairs in that row. To achieve high memory

bandwidth, SpAL sends wide memory read requests for (value,

column id) pairs such that size of the memory request is the

same as the channel interleaving size and thus implements

vectorized memory reads. SpAL also implements outstanding

requests and responses queue to avoid stalling for the memory

responses and thus is able send and receive memory requests

and responses in a pipelined manner. Once a (value, column

id) pair is read from the memory, SpAL sends the values along

with its row and column indices, namely, (aik, i, k) to SpBL.

Sparse Matrix B Loader. SpBL receives (aik, i, k) values

from SpAL and sends a memory read request for the (row

length, row pointer) pair in kth row of matrix B. It then

uses the row pointer to send multiple memory read requests

for the (value, column id) pairs in kth row of the B matrix.

Similar to SpAL, SpBL also loads the (value, column id) pairs

in vectorized streaming manner and maintains outstanding

requests and responses queue. When a (value, column id) pair

is read from the memory, SpBL sends the values aik, bkj , i
and j to the PE.

Processing Element. Each PE receives (aik, bkj , i, j) values

from SpBL and performs the multiply and merge operations.

Fig. 5b shows the design of a single PE. It consists of

a multiplier to calculate the product of aik and bkj and

produce the partial sum ckij . It also consists of two sets of

Q queues, where each queue contains (data, col id) pairs.

The reason behind having two set of queues is that the merge

operations in Fig. 4 can be divided into two phases: Phase I,
when the multiplications are performed and the result of the

multiplication is merged with the (data, col id) values in one

of the queues; and (b) Phase II, when all the partial sums for

a single output row have been written to one of the queues

and the (data, col id) values in different queues are merged

together and streamed out to the DRAM.

Since Phase II stalls the multiply operations, this can lead

to poor utilization of the multipliers. With two sets of queues,

when Phase I is completed, the multipliers can start computing

the results for the next output row in a different set of queues

while the results from the current queues are merged and

written to the DRAM. With this kind of double buffering,

Phase I and Phase II can be performed in parallel, which

results in higher compute utilization.

All the queues within a set are connected to a multiplexer,

which is used to select the queue with least number of entries.

The queues within a set are also connected to an adder tree and

minimum column index selection logic. The minimum column

index logic outputs a Q-bit signal where each bit represents

whether the corresponding queue has the minimum column

index. The output of minimum column index logic is then sent

to the controller which configures the adder tree to accumulate

the data values from the selected queues. The controller also

pops an element from each of these queues. Fig. 5b shows the

PE when the set of the queues on the left are involved in Phase

I computation and the set of queues on the right are involved

in Phase II of the computation. The inactive components from

both the sets are shown with gray color and dotted lines.

If the number of rows of the systolic array is an integer

multiple of the number of channels, then each row of the

systolic array will read/write the elements of matrix A/C
from/to a unique channel; however, multiple rows of the

systolic array can access the data from the same channel. If

the number of channels is an integer multiple of the number

of rows of the systolic array, then no two rows of the systolic

array will share a channel while a single row of systolic array

will be assigned more than one channel. For the cases when

the number of rows in the systolic array and the number

of channels are the same, each row of the systolic array is

assigned one channel.

V. EXPERIMENTAL SETUP

To evaluate the performance of MatRaptor, we model our

architecture consisting of SpALs, SpBLs, PEs, and HBM using

the gem5 simulator [7]. We implement the systolic array with

772

...

HBM

[, ,] [, , ,]
+

. . .

. . .

Adder
TreeMin col id

.

Comparator Controller

(a) (b)

... ...

x
data

signals
control
signals

. . .

. . .

Min col id

.
Adder
Tree

Phase I Phase II

Q Q

Queue0 QueueQ-1 QueueQ-1

(,)

Stream to DRAM

+

EN

…………… …………… …………… …………… …………… …………… …………… ……………
Queue0

Fig. 5: MatRaptor architecture — (a) shows the MatRaptor microarchitecture consisting of Sparse A Loaders (SpALs),

Sparse B Loaders (SpBLs), Processing Elements (PEs), system crossbar and high-bandwidth memory (HBM); (b) shows the

microarchitecture of a single PE consisting of multipliers, adders, comparator and queues on the left performing phase I of the

multiply and merge operations, and the queues on the right, adder tree and minimum column index logic performing phase II

of the merge operations.

eight rows to match the number of channels in the HBM. Each

PE consists of ten queues which are implemented as SRAMs

and where each queue is 4KB in size. We implemented the

memory request and response queues with 64 entries. We used

the gem5 memory model for HBM, which supports up to eight

128-bit physical channels, runs at 1GHz clock frequency and

provides a peak memory bandwidth of 128 GB/s.

We attach MatRaptor to a host CPU as a co-processor where

both the CPU and MatRaptor share the same off-chip memory.

For the host CPU we use the RISCV minor CPU model in

gem5. We add support for a custom instruction mtx (move to

accelerator) to send messages from host CPU to MatRaptor in

the RISCV gcc compiler and gem5 CPU model. The host CPU

first sends the pointers of the sparse storage arrays for matrices

A and B, and the pointers to an empty storage location for C

to the accelerator and then starts the accelerator by writing 1
in x0 configuration register and waits for the accelerator to

finish.

A. Measurements

We implemented the PEs and crossbar using PyMTL [32],

and performed RTL simulations to validate our gem5 model.

We then translated them to Verilog, synthesized them using

the Synopsys Design Compiler for synthesis and Cadence

Innovus for place-and-route, targeting a TSMC 28nm library.

We modeled the latency, area and power of the queues in

the merge logic and outstanding request and response queues

using CACTI 7.0 [35]. For SpALs and SpBLs, since the area

and power are dominated by outstanding memory requests and

response queues, we use the area and power numbers for these

queues from CACTI and add 10% overhead for the control

logic. Table I shows the area and power breakdown of different

components of the design. For HBM we use the energy

numbers from [45]. Overall the area of our accelerator is

2.2mm2, which is 31.3× smaller than the area of OuterSPACE

(70.2mm2 after technology scaling). The main reason behind

this is our PEs and on-chip memory are much simpler than

the PEs, scratchpads and caches in OuterSPACE.

TABLE I: Area and power breakdown of MatRaptor.

Component Area (mm2) % Power (mW) %

PE 1.981 87.77 % 1050.57 78.11 %
– Logic 0.080 3.54 % 43.08 3.20 %
– Sorting Queues 1.901 84.22 % 1007.49 74.90 %

SpAL 0.129 5.71 % 144.15 10.71 %

SpBL 0.129 5.71 % 144.15 10.71 %

Crossbars 0.016 0.7 % 6.067 0.45 %

Total 2.257 100 % 1344.95 100 %

B. Baselines

We compare our design against three baselines: CPU, GPU,

and OuterSPACE [39].

CPU: We use Intel Math Kernel Library (MKL) to evaluate

our benchmarks on both single thread and multiple threads (12

threads) of Intel Xeon E5-2699 v4 server-class CPU, which

is manufactured using 14nm technology node, runs at 2.20

GHz and has 32 KB L1 cache per core, 256 KB shared

L2 and 55 MB of shared L3 caches. We kept the number

of CPU threads in the multi-threaded version the same as

the one used in OuterSPACE [39] for their CPU baseline.

773

The CPU uses DDR4 with 4 DRAM channels and supports

a peak memory bandwidth of 76.8 GB/s. Since, SpGEMM

is primarily memory-bound and the Intel CPU supports a

peak memory bandwidth of only 76.8 GB/s while HBM

used for MatRaptor has a peak bandwidth of 128 GB/s, we

also scale the performance and energy efficiency of the CPU

accordingly to 128 GB/s for comparison purposes. For energy

estimation of CPU and DRAM, we use the energy numbers

from McPAT [28] and [6].

GPU: We use cuSPARSE [38] to evaluate the benchmarks on

an NVIDIA Titan Xp GPU, which is manufactured using a

16nm technology node; it uses GDDR5x DRAM with a peak

bandwidth of 547.6 GB/s and has a peak 32-bit performance

of 12.15 TFLOP/s. We use CUDA 9.1 to program the GPU.

Similar to the CPU, we scale the performance and energy

numbers of the GPU to 128 GB/s of peak memory bandwidth

and use both scaled and unscaled versions for comparisons. We

use nvidia-smi to measure the power consumption while

running SpGEMM benchmarks on the GPU and estimate the

power consumption of GDDR5x using [3].

Accelerator: We also compare our work against OuterSPACE,

the state-of-the-art SpGEMM accelerator, which uses the outer

product approach. We obtained the performance numbers

for all benchmarks from the authors of OuterSPACE and

used those numbers for comparison. For energy comparisons,

we used the power numbers from [39] which are in 32nm

technology node and scale them to 28nm.

TABLE II: Matrices from SuiteSparse [11] with their di-

mensions, number of non-zeros (nnz), density and problem

domain.

Matrix Dim nnz nnz
N

Density

web-Google (wg) 916K × 916K 5.1M 5.6 6.1e-6
mario002 (m2) 390K × 390K 2.1M 5.4 1.3e-5
amazon0312 (az) 401K × 401K 3.2M 8.0 1.9e-5
m133-b3 (mb) 200K × 200K 801K 4.0 2.0e-5
scircuit (sc) 171K × 171K 959K 5.6 3.2e-5
p2pGnutella31 (pg) 63K × 63K 148K 2.4 3.7e-5
offshore (of) 260K × 260K 4.2M 16.3 6.2e-5
cage12 (cg) 130K × 130K 2.0M 15.6 1.1e-4
2cubes-sphere (cs) 101K × 101K 1.6M 16.2 1.5e-4
filter3D (f3) 106K × 106K 2.7M 25.4 2.4e-4
ca-CondMat (cc) 23K × 23K 187K 8.1 3.5e-4
wikiVote (wv) 8.3K × 8.3K 104K 12.5 1.5e-3
poisson3Da (p3) 14K × 14K 353K 26.1 1.8e-3
facebook (fb) 4K × 4K 176K 43.7 1.1e-2

C. Technology Node Scaling

We scale the energy numbers for all these baselines to

28nm technology node. The dynamic power can be estimated

as αfCV 2
dd, where α is the switching activity, f is the

clock frequency, C is the total capacitance and Vdd is the

supply voltage. As α remains the same between technology

nodes, capacitance C scales proportional to the square of

Contacted Gate Poly Pitch (CPP) and Vdd is different for

different technology nodes, we use the ratio of the square

of CPP as a scaling factor for C and the ratio of Vdd to

scale the power and energy numbers. We obtain the CPP and

Vdd values for different technology nodes from their technical

specifications [52]–[55].

D. Datasets

For benchmarks, we used the same matrices as in Out-

erSPACE [39] which are taken from SuiteSparse [11] as shown

in Table II. Since OuterSPACE evaluates the performance

of SpGEMM by multiplying a sparse matrix with itself (C
= A×A), we used the same approach for our evaluation to

perform a fair comparison. However, since many of the real-

world applications such as graph contractions involve the

sparse matrix multiplication of two different matrices, we did

a performance evaluation by using different combinations of

A and B matrices from Table II. We selected the top-left

10K × 10K submatrices from all the matrices in Table II

so that the two matrices have same size but different sparsity

structure representative of the real matrices. This technique has

been adopted from a prior work on characterizing SpGEMM

performance on GPUs [25].

VI. EVALUATION

A. Bandwidth Utilization

To compare the bandwidth utilization of CSR and C2SR

we simulated 2, 4 and 8 PEs reading a sparse matrix from the

memory in a streaming fashion. For CSR, we assumed that

each PE reads 8-byte data elements from the memory to avoid

sending vectorized memory requests which map to different

channels and cause memory alignment problem. For C2SR,

each PE sends a 64-byte wide streaming memory requests.

For all the simulations we assumed the number of PEs to be

the same as the number of DRAM channels. Fig. 6 shows the

achieved bandwidth with CSR and C2SR formats. As it can

be seen from the figure, the achieved bandwidth from C2SR

format is higher than the achieved bandwidth from CSR and

is also close to the theoretical peak memory bandwidth.

3.4 7.2 15.222.6
44.4

89.6

32

64

128

0

50

100

150

2 4 8

Ba
nd

w
id

th
 (G

B/
s)

Number of channels / PEs
CSR C2SR Peak

Fig. 6: Achieved memory bandwidth with CSR and C2SR
— here the PE count equals the number of channels.

B. Roofline Evaluation

Fig. 7 shows the throughput of SpGEMM under the

roofline [56] of MatRaptor. The horizontal line towards the

774

10 2 10 1 100 101

Operation intensity (OPs/byte)

100

101

102
Pe

rfo
rm

an
ce

 (G
O

P/
s)

wiki-Vote

m133-b3

amazon0312
mario002

cage12

poisson3Da

ca-CondMat

web-Google

2cubes_sphere,
offshore

scircuit
p2p-Gnutella31

filter3D

10 1 100 101
Operation intensity (OPs/element)

facebook

Fig. 7: Performance of SpGEMM under the roofline of Ma-
tRaptor for A×A – Throughput(T) = Operation Intensity(OI)

× Bandwidth(B). Thus, log(T) = log(OI) + log(B), which is the

equation of a line, y = mx + c with y = log(T), x = log(OI), m =

1 and c = log(B). Thus, the y-axis in the roofline is throughput

in log domain (log(T)), x-axis is operation intensity in log

domain (log(OI)), the slope of the slanted line is 1 (m=1) and

the intercept of the slanted line (value at OI = 1) is the off-

chip memory bandwidth in GB/s i.e. 128). The horizontal line

on the right is of the form y = log(Tmax) where Tmax is the

maximum attainable throughput i.e. 32 GOP/s in our case.

right of the plot shows the peak attainable performance from

the design when the operation intensity is high (kernel is

compute bound) and the inclined line (with slope 1) towards

the left shows the peak attainable performance when the

operation intensity is low (kernel is memory bound). The

gap between the roofline and the achieved performance of

a kernel indicates the inefficiencies within the hardware and

the algorithm. Our design consists of 8 PEs, each with one

MAC unit and hence our design has 8 × 2 = 16 multipliers

and adders. Since we simulate our design for a 2GHz clock

frequency the peak attainable throughput is 16×2 = 32 GOP/s.

For peak memory bandwidth, we use the peak bandwidth of

HBM which is 128 GB/s.

Fig. 7 shows the achieved throughput for SpGEMM for A ×
A computation for all the matrices in Table II. It can be seen

from the roofline, the throughput for each of the benchmark is

close to the peak performance and all the benchmarks lie in the

memory bound region. The gap between the peak performance

and the attained performance is due to the memory accesses

to the matrix B. As in row-wise product approach only matrix

A and the output matrix C are partitioned among different PEs

while the matrix B is shared between different PEs, this results

in memory channels conflicts and lowers the achieved memory

bandwidth.

C. Performance Evaluation

Fig. 8a shows the performance comparison of CPU

(single-/multi-threaded and without/with bandwidth normal-

ization), GPU (without/with bandwidth normalization), Out-

erSPACE [39] and MatRaptor over the single-threaded CPU

baseline for A × A SpGEMM computation. As it can be seen

from the figure MatRaptor outperforms CPU and GPU for all

the benchmarks. Compared to OuterSPACE the performance

of MatRaptor is better for all the benchmarks except Wiki-

Vote, for which the performance of the two are very similar.

The main reason behind this is that Wiki-Vote has smaller size

compared to other matrices and the on-chip memory for the

output matrix in OuterSPACE is sufficient to store the partial

sums, which results in similar performance of OuterSPACE

and MatRaptor. In terms of geometric mean speedup, Ma-

tRaptor achieves 129.2×, 77.5×, 12.9×, 7.9×, 8.8×, 37.6
and 1.8× speedup over single-threaded CPU without and

with bandwidth normalization, multi-threaded CPU without

and with bandwidth normalization, GPU without and with

bandwidth normalization, and OuterSPACE, respectively.

Fig. 9 provides a breakdown that shows (1) the number

of cycles when the multipliers in the PEs are active, and (2)

the stall cycles due to merge and memory access. For almost

all the benchmarks there are stalls due to merge, which is

expected as the merging takes more time than multiplications.

We also measured the ratio of cycles spent in phases I and

II. This ratio varied in the range of [2, 15], as most of the

merge logic is in phase I. But since in some cases, phase II

takes as long as 50% of the time spent in phase I, we opt

to pipeline these two phases using a double buffer. Fig. 10a

shows the speedup of MatRaptor over GPU with bandwidth

normalization for A × B SpGEMM computation. It can be seen

from these figures that for GPU the performance of MatRaptor

is better in all the cases. Overall MatRaptor achieves 26.8×
speedup over GPU with bandwidth normalization for A × B
computation.

D. Energy

Fig. 8b shows the energy comparison of CPU (single-/multi-

threaded and without/with bandwidth normalization), GPU

(without/with bandwidth normalization), OuterSPACE [39]

and MatRaptor for A × A SpGEMM computation. In terms of

geometric mean energy benefit, MatRaptor achieves 482.5×,

289.6×, 581.5×, 348.9×, 574.8×, 2458.9× and 12.2× energy

benefit over single-threaded CPU without and with band-

width normalization, multi-threaded CPU without and with

bandwidth normalization, GPU without and with bandwidth

normalization, and OuterSPACE, respectively. Fig. 10b shows

the energy benefit of MatRaptor over GPU with bandwidth

normalization for A × B SpGEMM computation, where Ma-

tRaptor achieves 1756.5× improvement in energy.

E. Load Imbalance

To measure the load imbalance due to the power-law distri-

bution of the sparse matrices as discussed in Section IV-A, we

determine the total number of non-zeros of matrix A assigned

to each PE by C2SR format and plot the ratio of maximum and

minimum number of non-zeros in these PEs. The minimum

value of such ratio is 1, which means no load imbalance and a

higher ratio means a higher load imbalance. Fig. 11 shows the

775

(a) Speedup

(b) Energy benefit

Fig. 8: Speedup and energy comparison for A×A — CPU-1T = single-thread CPU; CPU-1T-BW = single-thread CPU with

bandwidth normalization; CPU-12T = CPU with 12 threads; CPU-1T-BW = CPU with 12 threads and bandwidth normalization;

GPU; GPU-BW = GPU with bandwidth normalization; OuterSPACE and MatRaptor. All the speedup and energy benefit

numbers are relative to the CPU-1T baseline. The mean is the geometric mean of the speedups and energy benefits for

different benchmarks.

Fig. 9: Performance breakdown – plotted as a fraction of

total cycles when multipliers are busy and the cycle breakdown

when they are stalled due to merge and memory accesses.

load imbalance; except for wv and fb the load imbalance for

all the benchmarks is less than 5%. For wv and fb the load

imbalance is higher because these matrices are small and thus

a round-robin row assignment to PEs is not very effective.

(a) Speedup (b) Energy benefit

Fig. 10: Speedup and energy benefit of MatRaptor over
GPU-CuSPARSE for A×B — A and B are top-left 10K×10K

tiles of different matrices from the dataset. All the performance

and energy results are normalized to 128 GB/s off-chip mem-

ory bandwidth and 28nm technology node.

VII. DISCUSSION

Format Conversion – The current implementation assumes

that the number of virtual channels used to create C2SR

matches the number of physical channels in the DRAM,

which results in highly efficient SpGEMM processing. To

776

Fig. 11: Load Imbalance — measured as the ratio of the

maximum and minimum number of non-zeros of matrix A

assigned to the PEs.

make the sparse format portable across different platforms,

the sparse matrix can be stored in CSR format and converted

to C2SR (or vice versa) by a target-specific software library

or dedicated logic in the accelerator. The complexity of

such conversion is O(nnz) which is much lower than that

of SpGEMM O(nnz*nnz/N). More importantly, the cost of

format conversion gets amortized due to: (1) In SpGEMM,

the rows of matrix B are read multiple times while for the

format conversion they are read only once; (2) For algorithms

like local graph clustering, the same sparse matrix is reused

multiple times; (3) Many other algorithms such as graph

contractions perform a chain of matrix multiplications and

thus the output matrix becomes the input of another SpGEMM

without requiring additional format conversion.

To evaluate the performance overhead of CSR to C2SR

conversion and vice versa, we designed a simple hardware

unit that reads the sparse matrix in CSR format and stores it

back to memory in C2SR. According to our results, the format

conversion takes on average 12% of the SpGEMM execution

time on MatRaptor.

Buffer Overflow – Since the sorting queues are used to store

the partial sums for an output row and the size of the queues

is limited, the partial sums may not always fit in the queues.

Whenever such a condition arises for an output row, the

hardware raises an exception and the SpGEMM computation

will fall back to the CPU. This ensures the correctness of

MatRaptor irrespective of the size and density of the input

matrices.

We can further optimize the performance by having the CPU

only handle the rows that cause the overflow. In this scheme,

whenever a PE encounters an output row i that will not fit in

the queues, MatRaptor simply leaves an “empty” row of size∑
kε{A[i,k]�=0} nnz(B[k, :]) in the output matrix and continues

to compute the next row. This expression represents the sum

of the row lengths of matrix B whose row indices are the same

as the column indices k of the non-zero elements in A[i. :].
This serves as an upper bound on the number of non-zeros in

C[i, :]. Since SpBL is responsible for loading these rows of

matrix B, a simple accumulator that sums up the “row length”

values in C2SR will be sufficient. When the accelerator has

finished computation, it will send to the CPU the indices of

the incomplete output rows (if there are any). The CPU will

then finish the rest of the computation.

Note that there might be some empty space for padding at

the end of the output row computed by the CPU; but this slight

storage overhead will not affect the compute or bandwidth

requirement, even if the output matrix C is used right away

in a subsequent computation. Since the C2SR format encodes

the row length of each row, the padding will not be read from

memory.

VIII. RELATED WORK

Sparse Storage Formats. Many sparse storage formats

have been proposed in the literature. CSR (Compressed Sparse

Row), CSC (Compressed Sparse Column) and COO (Co-

ordinate) are the most commonly used sparse storage formats

for CPUs. Liu et al. [30] proposed a sparse tensor storage

format F-COO, which is similar to the co-ordinate format

and used it for GPUs. CSF [46] and Hi-COO [27] are other

sparse tensor storage formats that are based on CSR and

COO, respectively. Unlike C2SR these formats do not support

efficient parallel accesses to multiple memory channels and

thus achieve low bandwidth utilization. For machine learning

hardware, researchers have proposed multiple variants of CSR

and CSC formats. For example, Cambricon-X [61] proposed

a modification of CSR format where the non-zeros are are

compressed and stored in contiguous memory and index

vectors are used to decode the row and column indices.

EIE [18] uses a variant of CSC storage format where instead

of storing the row indices they store the number of zeros

before a non-zero element. Since these works focus on deep

learning, especially CNNs, their sparse storage format is

specialized for low sparsity (high density) and is not suitable

for SpGEMM computation where the matrices have high

sparsity. For SpGEMM involving matrices with high sparsity,

OuterSPACE [39] uses a variant of CSR and CSC formats

called CR and CC. However, to solve the issues related to

channel conflicts and memory misalignment, it uses caches

instead to directly accessing the DRAM from the hardware

and thus spends 18× more area for on-chip memory compare

to MatRaptor. Fowers et al. [13] and Tensaurus [47] proposed

sparse storage formats called compressed interleaved sparse
row (CISR) and compressed interleaved sparse slice (CISS)

which also maps different PEs to different DRAM channels

for sparse tensor kernels. In contrast to C2SR, these formats

can only be used for a static input matrix and not for the output

as the coordinates of all non-zero elements must be known a

priori.

CPU/GPU Acceleration. Akbudak et al. [1] proposed

hypergraph and bipartite graph models for 1D row-wise parti-

tioning of matrix A in SpGEMM to evenly partition the work

across threads. Saule et al. [43] investigated the performance

of the Xeon Phi coprocessor for SpMV computation. Sulatycke

et al. [49] proposed a sequential cache-efficient algorithm

777

and illustrated high performance than existing algorithms for

sparse matrix multiplication for CPUs. Nagasaka et al. [36]

mitigates multiple bottlenecks with memory management and

thread scheduling for SpGEMM kernel on Intel Xeon Phi.

The works involving GPU acceleration of SpGEMM compu-

tation include [10], [15], [31], [34], [37]. Kiran et al. [34]

explore the load-balancing problem that only considers the

band matrices. Weifeng and Brian [31] apply the techniques

such as GPU merge path algorithm and memory pre-allocation

to improve the performance and the storage issue. Felix et
al. [15] reduce the overhead of memory access by merging

several sparse rows using the main kernel. Steven et al. [10]

decompose the SpGEMM operations and leverage bandwidth

saving operations like layered graph model. They also perform

the SpGEMM in a row-wise product method to balance the

workload and improve the performance. Nagasaka et al. [37]

proposed a fast SpGEMM algorithm that has small memory

footprints and achieves high performance.

Custom Accelerators. For sparse-dense and sparse-sparse

matrix-matrix and matrix-vector accelerators, prior works in-

volving FPGA implementations include [33], ESE [17], [65]

and [13]. Lu et al. [33] proposed a CNN accelerator with

sparse weights. ESE [17] proposed an FPGA-accelerator for

SpMV in LSTMs. Prasanna et al. [65] and Fowers et al. [13]

proposed SpMV accelerators for very sparse matrices. Lin

et al. [29] proposed an FPGA-based architecture for sparse

matrix-matrix multiplication. T2S-Tensor [48] proposed a

language and compilation framework to generate high per-

formance hardware for dense tensor computations such as

GEMM. Rong et al. [42] extended this language to add support

for SpMV.

Several prior efforts involved ASIC implementations. Exam-

ples include Cambricon-S [63], Cnvlutin [2], SCNN [40], [4],

OuterSPACE [39] and ExTensor [20]. Cambricon-S [63] im-

plements hardware accelerator for SpGEMM in CNNs where

both weight matrices and neurons are sparse. SCNN [40]

proposes a SpGEMM accelerator for CNNs which can also

exploit the sparsity in both weights and neurons. Anders et
al. [4] proposed accelerator designs for SpGEMM. EIE [18]

proposes SpMSpV (sparse matrix sparse vector multiplication)

accelerator for fully connected layers in CNN and show

significant performance gains over CPU and GPU. However,

all these works focused on deep learning application where the

density is really high. TPU [22] implemented a 2-d systolic

array for GEMM. Tensaurus [47] proposed a hardware accel-

erator for sparse-dense tensor computations such as SpMV and

SpMM.

OuterSPACE [39], ExTensor [20] and SpArch [62] are few

recent works that propose hardware accelerators for SpGEMM

computation on very sparse matrices. However, OuterSPACE

applies the outer product approach and ExTensor applies the

inner product approach for SpGEMM, the inefficiencies of

which have been discussed in Section II. SpArch attempts to

improve the outer product approach by matrix-condensing and

Huffman trees. However, this results in a complicated design

that has more area and power, and lower performance/watt,

compared to our approach based on row-wise product. Their

simulation infrastructure is also different from OuterSPACE

and ours where they use custom models for HBM instead of

open-source gem5 HBM memory model. In this work, we do

not perform detailed performance comparison with SpArch

because of difference in our HBM models.

Yavits and Ginosar [59] and [58] explored content address-

able memory (CAM) and RAM-based compute for SpMSpV

and SpGEMM. One of the major limitations of the CAM-

based approach is that the output elements are not produced

in a sorted order of their indices and thus require extra sorting

hardware. We conjecture that although the CAM itself might

be more efficient, CAM along with the sorting hardware will

be more expensive in terms of both area and energy compared

to MatRaptor. Zhu et al. [64] introduced a 3D-stacked logic-

in-memory system by placing logic layers between DRAM

dies to accelerate a 3D-DRAM system for sparse data access

and built a custom CAM architecture to speed-up the index-

alignment process of column-wise product approach.

IX. CONCLUSION

In this work, we propose a novel row-wise product based

accelerator (MatRaptor) for SpGEMM which achieves high

performance and energy-efficiency over CPU, GPU and state-

of-the-art SpGEMM accelerator OuterSPACE. It also has 7.2×
lower power consumption and 31.3× smaller area compared to

OuterSPACE. To achieve this, we introduce a new hardware-

friendly sparse storage format named C2SR, which improves

the memory bandwidth utilization by enabling vectorized

and streaming memory accesses. We also implement a novel

sorting hardware to merge the partial sums in the SpGEMM

computation. We prototype and simulate our MatRaptor using

gem5 on a diverse set of matrices.

ACKNOWLEDGEMENT

This research was funded in part by CRISP, one of six cen-

ters in JUMP, a Semiconductor Research Corporation (SRC)

program sponsored by DARPA, under NSF Awards #1453378,

#1909661, and by AFRL and DARPA under agreement num-

ber FA8650-18-2-7863. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The views

and conclusions contained herein are those of the authors

and should not be interpreted as necessarily representing the

official policies or endorsements, either expressed or implied,

of AFRL and DARPA or the U.S. Government.

REFERENCES

[1] K. Akbudak and C. Aykanat, “Exploiting locality in sparse matrix-
matrix multiplication on many-core architectures,” Trans. on Parallel
and Distributed Systems, 2017.

[2] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” ACM SIGARCH Computer Architecture News, 2016.

[3] AnandTech. https://www.anandtech.com/show/9883/gddr5x-standard-
jedec-new-gpu-memory-14-gbps.

778

[4] M. Anders, H. Kaul, S. Mathew, V. Suresh, S. Satpathy, A. Agarwal,
S. Hsu, and R. Krishnamurthy, “2.9 TOPS/W Reconfigurable Dense/S-
parse Matrix-Multiply Accelerator with Unified INT8/INTI6/FP16 Dat-
apath in 14NM Tri-Gate CMOS,” 2018.

[5] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” Workshop in Int’l Symp. on Parallel
and Distributed Processing, 2015.

[6] R. Balasubramonian. (2014) Lecture on memory wall. https://my.eng.
utah.edu/∼cs7810/pres/14-7810-02.pdf.

[7] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, 2011.

[8] W. L. Briggs, S. F. McCormick et al., “A multigrid tutorial,” 2000.
[9] P. D’alberto and A. Nicolau, “R-Kleene: A high-performance divide-

and-conquer algorithm for the all-pair shortest path for densely con-
nected networks,” Algorithmica, 2007.

[10] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix—matrix
multiplication for the gpu,” Trans. on Mathematical Software (TOMS),
2015.

[11] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” Trans. on Mathematical Software (TOMS), 2011.

[12] I. S. Duff, M. A. Heroux, and R. Pozo, “An overview of the sparse basic
linear algebra subprograms: The new standard from the BLAS technical
forum,” Trans. on Mathematical Software (TOMS), 2002.

[13] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
“A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication,” IEEE Symp. on Field Programmable Custom Computing
Machines (FCCM), 2014.

[14] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “A unified framework
for numerical and combinatorial computing,” Computing in Science &
Engineering, 2008.

[15] F. Gremse, A. Hofter, L. O. Schwen, F. Kiessling, and U. Naumann,
“GPU-accelerated sparse matrix-matrix multiplication by iterative row
merging,” SIAM Journal on Scientific Computing, 2015.

[16] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplication
and permuted transposition,” Trans. on Mathematical Software (TOMS),
1978.

[17] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “Ese: Efficient speech recognition engine with sparse
lstm on fpga,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2017.

[18] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: efficient inference engine on compressed deep neural
network,” Int’l Symp. on Computer Architecture (ISCA), 2016.

[19] V. Hapla, D. Horák, and M. Merta, “Use of direct solvers in TFETI
massively parallel implementation,” Int’l Workshop on Applied Parallel
Computing, 2012.

[20] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An Accelerator
for Sparse Tensor Algebra,” Int’l Symp. on Microarchitecture (MICRO),
2019.

[21] S. Itoh, P. Ordejón, and R. M. Martin, “Order-N tight-binding molecular
dynamics on parallel computers,” Computer physics communications,
1995.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter perfor-
mance analysis of a tensor processing unit,” Int’l Symp. on Computer
Architecture (ISCA), 2017.

[23] H. Kaplan, M. Sharir, and E. Verbin, “Colored intersection searching via
sparse rectangular matrix multiplication,” Int’l Symp. on Computational
Geometry, 2006.

[24] G. Karypis, A. Gupta, and V. Kumar, “A parallel formulation of interior
point algorithms,” Int’l Conf. on Supercomputing, 1994.

[25] S. E. Kurt, V. Thumma, C. Hong, A. Sukumaran-Rajam, and P. Sadayap-
pan, “Characterization of data movement requirements for sparse matrix
computations on gpus,” Int’l Conf. on High Performance Computing
(HiPC), 2017.

[26] J. Leskovec, L. A. Adamic, and B. A. Huberman, “The Dynamics of
Viral Marketing,” Trans. on the Web (TWEB), 2007.

[27] J. Li, J. Sun, and R. Vuduc, “HiCOO: Hierarchical storage of sparse
tensors,” Int’l Conf. for High Performance Computing, Networking,
Storage and Analysis, 2018.

[28] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” Int’l Symp. on
Microarchitecture (MICRO), 2009.

[29] C. Y. Lin, N. Wong, and H. K.-H. So, “Design space exploration for
sparse matrix-matrix multiplication on FPGAs,” International Journal
of Circuit Theory and Applications, 2013.

[30] B. Liu, C. Wen, A. D. Sarwate, and M. M. Dehnavi, “A unified
optimization approach for sparse tensor operations on gpus,” Int’l Conf.
on Cluster Computing (CLUSTER), 2017.

[31] W. Liu and B. Vinter, “An efficient GPU general sparse matrix-
matrix multiplication for irregular data,” Int’l Parallel and Distributed
Processing Symposium, 2014.

[32] D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified framework
for vertically integrated computer architecture research,” Int’l Symp. on
Microarchitecture (MICRO), 2014.

[33] L. Lu, J. Xie, R. Huang, J. Zhang, W. Lin, and Y. Liang, “An Effi-
cient Hardware Accelerator for Sparse Convolutional Neural Networks
on FPGAs,” IEEE Symp. on Field Programmable Custom Computing
Machines (FCCM), 2019.

[34] K. Matam, S. R. K. B. Indarapu, and K. Kothapalli, “Sparse matrix-
matrix multiplication on modern architectures,” Int’l Conf. on High
Performance Computing, 2012.

[35] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI 6.0:
A tool to model large caches,” HP laboratories, 2009.

[36] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç, “High-performance
sparse matrix-matrix products on Intel KNL and multicore architec-
tures,” Int’l Conf. on Parallel Processing Companion, 2018.

[37] Y. Nagasaka, A. Nukada, and S. Matsuoka, “High-performance and
memory-saving sparse general matrix-matrix multiplication for nvidia
pascal gpu,” Int’l Conf. on Parallel Processing (ICPP), 2017.

[38] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, “Cusparse
library,” GPU Technology Conference, 2010.

[39] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE:
An outer product based sparse matrix multiplication accelerator,” Int’l
Symp. on High-Performance Computer Architecture (HPCA), 2018.

[40] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An
accelerator for compressed-sparse convolutional neural networks,” Int’l
Symp. on Computer Architecture (ISCA), 2017.

[41] M. O. Rabin and V. V. Vazirani, “Maximum matchings in general graphs
through randomization,” Journal of Algorithms, 1989.

[42] H. Rong, “Expressing Sparse Matrix Computations for Productive Per-
formance on Spatial Architectures,” arXiv preprint arXiv:1810.07517,
2018.

[43] E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Performance evaluation of
sparse matrix multiplication kernels on intel xeon phi,” Int’l Conf. on
Parallel Processing and Applied Mathematics, 2013.

[44] V. B. Shah, “An interactive system for combinatorial scientific com-
puting with an emphasis on programmer productivity,” University of
California, Santa Barbara, 2007.

[45] A. Shilov. (2016) Jedec publishes hbm2 specification. http://www.
anandtech.com/show/9969/jedec-publisheshbm2-specification.

[46] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT:
Efficient and parallel sparse tensor-matrix multiplication,” Int’l Symp.
on Parallel and Distributed Processing, 2015.

[47] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor
Computations,” Int’l Symp. on High-Performance Computer Architecture
(HPCA), 2020.

[48] N. Srivastava, H. Rong, P. Barua, G. Feng, H. Cao, Z. Zhang, D. Al-
bonesi, V. Sarkar, W. Chen, P. Petersen, G. Lowney, A. H. Herr,
C. Hughes, T. Mattson, and P. Dubey, “T2S-Tensor: Productively Gen-
erating High-Performance Spatial Hardware for Dense Tensor Com-

779

putations,” IEEE Symp. on Field Programmable Custom Computing
Machines (FCCM), 2019.

[49] P. D. Sulatycke and K. Ghose, “Caching-efficient multithreaded fast
multiplication of sparse matrices,” Proceedings of the First Merged In-
ternational Parallel Processing Symposium and Symposium on Parallel
and Distributed Processing, 1998.

[50] S. M. Van Dongen, “Graph clustering by flow simulation,” 2000.
[51] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang,

“Intel math kernel library,” High-Performance Computing on the Intel®
Xeon Phi™, 2014.

[52] WikiChip, “14 nm lithography process,” https://en.wikichip.org/wiki/14
nm lithography process.

[53] WikiChip, “16 nm lithography process,” https://en.wikichip.org/wiki/16
nm lithography process.

[54] WikiChip, “28 nm lithography process,” https://en.wikichip.org/wiki/28
nm lithography process.

[55] WikiChip, “32 nm lithography process,” https://en.wikichip.org/wiki/32
nm lithography process.

[56] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Commun. ACM,
2009.

[57] I. Yamazaki and X. S. Li, “On techniques to improve robustness and
scalability of a parallel hybrid linear solver,” Int’l Conf. on High
Performance Computing for Computational Science, 2010.

[58] L. Yavits and R. Ginosar, “Accelerator for sparse machine learning,”
IEEE Computer Architecture Letters, 2017.

[59] L. Yavits and R. Ginosar, “Sparse matrix multiplication on CAM based
accelerator,” arXiv preprint arXiv:1705.09937, 2017.

[60] R. Yuster and U. Zwick, “Detecting short directed cycles using rectan-
gular matrix multiplication and dynamic programming,” SIAM Symp. on
Discrete Algorithms, 2004.

[61] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen,
and Y. Chen, “Cambricon-x: An accelerator for sparse neural networks,”
Int’l Symp. on Microarchitecture (MICRO), 2016.

[62] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient
Architecture for Sparse Matrix Multiplication,” Int’l Symp. on High-
Performance Computer Architecture (HPCA), 2020.

[63] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li,
T. Chen, and Y. Chen, “Cambricon-S: Addressing Irregularity in Sparse
Neural Networks through A Cooperative Software/Hardware Approach,”
Int’l Symp. on Microarchitecture (MICRO), 2018.

[64] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Accel-
erating sparse matrix-matrix multiplication with 3D-stacked logic-in-
memory hardware,” Int’l Conf. on High Performance Extreme Comput-
ing (HPEC), 2013.

[65] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication on
FPGAs,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2005.

780

